Abstract

Bacterial infection is a critical factor in wound healing. Due to the abuse of antibiotics, some pathogenic bacteria have developed resistance. Thus, there is an urgent need to develop a non-antibiotic-dependent multifunctional wound dressing for the treatment of bacteria-infected wounds. In this work, a multifunctional AOCuT hydrogel embedded with CuS@TA-Fe nanoparticles (NPs) through Schiff base reaction between gelatin quaternary ammonium salt - gallic acid (O-Gel-Ga) and sodium dialdehyde alginate (ADA) along with electrostatic interactions with CuS@TA-Fe NPs is prepared. These composite hydrogels possess favorable injectability, rapid shape adaptation, electrical conductivity, photothermal antimicrobial activity, and biocompatibility. Additionally, the doped NPs not only impart fast self-healing properties and excellent adhesion performance to the hydrogels, but also provide excellent peroxide-like properties, enabling them to scavenge free radicals and exhibit anti-inflammatory and antioxidant capabilities via photothermal (PTT) and photodynamic (PDT) effects. In an S. aureus infected wound model, the composite hydrogel effectively reduces the expression level of wound inflammatory factors and accelerates collagen deposition, epithelial tissue, and vascular regeneration, thereby promoting wound healing. This safe and synergistic therapeutic system holds great promise for clinical applications in the treatment of infectious wounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call