Abstract

It is imperative to design and fabricate a high-performance free-standing electrode to meet the demand for flexible energy-storage devices with the development of wearable and portable electronics. CuS is an impressive candidate as an ideal pseudo-capacitance material due to its high theoretical capacity, easy preparation and wide source of raw materials. However, the low conductivity of CuS limits its application. Herein, polyaniline (PANI) was coated on CuS @ functional carbon cloth (fCC) to address the inherent defects of CuS using a facile polymerization procedure. Nano-scale PANI arrays with excellent conductivity grown on super-hydrophilic fCC provide a superior electroactive surface and facilitate electron transfer and electrolyte diffusion, which enhance the electrochemical performance of free-standing electrode. The as-prepared PANI/CuS@fCC electrode exhibits outstanding areal capacitance of 2167.2 mF cm−2 at 0.5 mA cm−2, impressive capacitance retention rate (89.2 %) after 5000 cycles at 5 mA cm−2, and satisfactory mechanical properties and flexibility. The assembled symmetrical supercapacitor also exhibits significant rate capacity with a specific capacitance of 816.4 mF cm−2, a high energy density of 0.268 mW h cm−2 at 0.5 mW cm−2and stable cycle performance with a capacitance retention rate exceeding 98 %. This study provides an effective strategy to fabricate advanced and flexible supercapacitor electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.