Abstract

We consider a nonlinear degenerate convection–diffusion equation with inhomogeneous convection and prove that its entropy solutions in the sense of Kružkov are obtained as the—a posteriori unique—limit points of the JKO variational approximation scheme for an associated gradient flow in the \(L^2\)-Wasserstein space. The equation lacks the necessary convexity properties which would allow to deduce well-posedness of the initial value problem by the abstract theory of metric gradient flows. Instead, we prove the entropy inequality directly by variational methods and conclude uniqueness by doubling of the variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.