Abstract

Bayesians often assume, suppose, or conjecture that for any reasonable explication of the notion of simplicity a prior can be designed that will enforce a preference for hypotheses simpler in just that sense. Further, it is often claimed that the Bayesian framework automatically implements Occam's razor---that conditionalizing on data consistent with both a simple theory and a complex theory more or less inevitably favours the simpler theory. But it is shown here that there are simplicity-driven approaches to curve-fitting problems that cannot be captured within the orthodox Bayesian framework and that the automatic razor does not function for such problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.