Abstract

Curved structures, such as beams, arches and panels are capable of exhibiting snap-through buckling behavior when loaded laterally. However, the propensity to maintain a stable snapped-through equilibrium position (in addition to the nominally unloaded equilibrium configuration) after the load is removed depends on certain geometric properties. A number of clamped arches are used to illustrate the relation between geometry (thickness, span, initial deflection) and the corresponding equilibrium configuration(s). The finite element method and an elastica analysis compare well with a number of specifically-shaped arches produced using a 3D printer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.