Abstract

We revise the classical Daoud-Cotton (DC) model to describe conformations of polymer and polyelectrolyte chains end-grafted to convex spherical and cylindrical surfaces. In the framework of the DC model, local stretching of chains in the brush does not depend on the degree of polymerization of grafted chains, and the polymer density profile follows a single-exponent power law. This model, however, does not correspond to a minimum in free energy of the curved brush. The nonlocal (NL) approximation exploited in the present paper implies the minimization of the overall free energy of the brush and predicts that the polymer density profile does not follow a single-exponent power law. In the limit of large surface curvature the NL approximation provides the same scaling laws for brush thickness and free energy as the local DC model. Numerical prefactors are however different. Extra extension of chains in the brush interior region leads to larger equilibrium brush thickness and lower free energy per chain. A significant difference between outcomes of the two models is found for brushes formed by ionic polymers, particularly for weakly dissociating (p H-sensitive) polyelectrolytes at low solution salinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.