Abstract

For each k ≥ 1 and corresponding hexagonal number h(k) = 3k(k+1)+1, we introduce $m(k) = \max \{{(k-1)!}/{2}, 1\}$ packings of h(k) equal disks inside a circle which we call the curved hexagonal packings. The curved hexagonal packing of 7 disks (k = 1, m(1)=1) is well known and one of the 19 disks (k = 2, m(2)=1) has been previously conjectured to be optimal. New curved hexagonal packings of 37, 61, and 91 disks (k = 3, 4, and 5, m(3)=1, m(4)=3, and m(5)=12) were the densest we obtained on a computer using a so-called ``billiards'' simulation algorithm. A curved hexagonal packing pattern is invariant under a $60^{\circ}$ rotation. For $k \rightarrow \infty$ , the density (covering fraction) of curved hexagonal packings tends to ${\pi^2}/{12}$ . The limit is smaller than the density of the known optimum disk packing in the infinite plane. We found disk configurations that are denser than curved hexagonal packings for 127, 169, and 217 disks (k = 6, 7, and 8). In addition to new packings for h(k) disks, we present the new packings we found for h(k)+1 and h(k)-1 disks for k up to 5, i.e., for 36, 38, 60, 62, 90, and 92 disks. The additional packings show the ``tightness'' of the curved hexagonal pattern for k ≤ 5: deleting a disk does not change the optimum packing and its quality significantly, but adding a disk causes a substantial rearrangement in the optimum packing and substantially decreases the quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.