Abstract

Thin nematic elastomers, composite hydrogels, and plant tissues are among many systems that display uniform anisotropic deformation upon external actuation. In these materials, the spatial orientation variation of a local director field induces intricate global shape changes. Despite extensive recent efforts, to date there is no general solution to the inverse design problem: How to design a director field that deforms exactly into a desired surface geometry upon actuation, or whether such a field exists. In this work, we phrase this inverse problem as a hyperbolic system of differential equations. We prove that the inverse problem is locally integrable, provide an algorithm for its integration, and derive bounds on global solutions. We classify the set of director fields that deform into a given surface, thus paving the way to finding optimized fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.