Abstract

We study the relation between maps of a high-dimensional stimulus manifold onto an essentially two-dimensional cortical area and low-dimensional maps of stimulus features such as centroid position, orientation, spatial frequency, etc. Whereas the former safely can be represented in a Euclidean space, the latter are shown to require a Riemannian metric in order to reach qualitatively similar stationary structures under a standard learning algorithm. We show that the non-Euclidean framework allows for a tentative explanation of the presence of the so-called “pinwheels” in feature maps and compare maps obtained numerically in the flat high-dimensional maps and in the curved low-dimensional case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.