Abstract

Curved Cu nanowire (CCN)-based high-performance flexible transparent conductive electrodes (FTCEs) were fabricated via a fully solution-processed approach, involving synthesis, coating, patterning, welding, and transfer. Each step involved an innovative technique for completing the all-solution processes. The high-quality and well-dispersed CCNs were synthesized using a multi-polyol method through the synergistic effect of specific polyol reduction. To precisely control the optoelectrical properties of the FTCEs, the CCNs were uniformly coated on a polyimide (PI) substrate via a simple meniscus-dragging deposition method by tuning several coating parameters. We also employed a polyurethane (PU)-stamped patterning method to effectively produce 20 μm patterns on CCN thin films. The CCN thin films exhibited high electrical performance, which is attributed to the deeply percolated CCN network formed via a solvent-dipped welding method. Finally, the CCN thin films on the PI substrate were partially embedded and transferred to the PU matrix to reduce their surface roughness. Through consecutive processes involving the proposed methods, a highly percolated CCN thin film on the PU matrix exhibited high optoelectrical performance (R s = 53.48 Ω/□ at T = 85.71%), excellent mechanical properties (R/R 0 < 1.10 after the 10th repetition of tape peeling or 1,000 bending cycles), and a low root-mean-square surface roughness (R rms = 14.36 nm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.