Abstract

A series of tests on curved concrete filled steel tubular (CCFST) built-up members subjected to axial compression is described in this paper. Twenty specimens, including 18 CCFST built-up members and 2 curved hollow tubular built-up columns, were tested to investigate the influence of variations in the tube shape (circular and square), initial curvature ratio (βr, from 0 to 7.4%), nominal slenderness ratio (λn, from 9.9 to 18.9), section pattern (two main components, three main components and four main components), as well as brace pattern (battened and laced) on the performance of such composite built-up members. The experimental results showed that the ultimate strength and stiffness of CCFST built-up specimens decreased with increasing βr or λn. Different load-bearing capacities and failure modes were obtained for the battened and laced built-up members. A simplified method using an equivalent slenderness ratio was suggested to calculate the strength of CCFST built-up members under axial compression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call