Abstract

In geochemical analysis using inductively coupled plasma atomic emission spectrometry (ICP-AES), spectral interferences and background enhancement in response to sample concomitants are the main cause of deterioration of the limit of detection (LOD) and inaccuracy of the determination at the trace and minor element levels. In this account, the authors describe the chemometric procedure of curve resolution for compensating for these sources of error. A newly developed method for calculating figures of merit is used to evaluate the correction procedure, test the statistical significance of the determined concentration, and determine LODs for each sample. The technique involves scanning the vicinity of the spectral line of the analyte. With prior knowledge of potential spectral interferences, deconvolution of the overlapped response is possible. Analytical data for a wide range of geological standard reference materials demonstrate the effectiveness of the chemometric techniques. Separation of 0.002 nm spectral coincidence, employing a 0.02 nm resolution spectrometer, is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.