Abstract

We survey some features of equivariant instanton partition functions of topological gauge theories on four and six dimensional toric Kähler varieties, and their geometric and algebraic counterparts in the enumerative problem of counting holomorphic curves. We discuss the relations of instanton counting to representations of affine Lie algebras in the four-dimensional case, and to Donaldson–Thomas theory for ideal sheaves on Calabi–Yau threefolds. For resolutions of toric singularities, an algebraic structure induced by a quiver determines the instanton moduli space through the McKay correspondence and its generalizations. The correspondence elucidates the realization of gauge theory partition functions as quasi-modular forms, and reformulates the computation of noncommutative Donaldson–Thomas invariants in terms of the enumeration of generalized instantons. New results include a general presentation of the partition functions on ALE spaces as affine characters, a rigorous treatment of equivariant partition functions on Hirzebruch surfaces, and a putative connection between the special McKay correspondence and instanton counting on Hirzebruch–Jung spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.