Abstract
The method of B-splines provides a very powerful way of representing curves and curved surfaces. The definition is ideally suited to applications in Computer Aided Design (CAD) where the designer is required to remodel the surface by reference to interactive graphics. This particular facility can be advantageous in CAD of body support surfaces, such as design of sockets of limb prostheses, shoe insoles, and custom seating. The B-spline surface is defined by a polygon of control points which in general do not lie on the surface, but which form a convex hull enclosing the surface. Each control point can be adjusted to remodel the surface locally. The resultant curves are well behaved. However, in these biomedical applications the original surface prior to modification is usually defined by a limited set of point measurements from the body segment in question. Thus there is a need initially to define a B-spline surface which interpolates this set of data points. In this paper, a computer-iterative method of fitting a B-spline surface to a given set of data points is outlined, and the technique is demonstrated for a curve. Extension to a surface is conceptually straightforward.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.