Abstract

BackgroundAnterior cruciate ligament (ACL) ruptures may lead to knee dysfunctions later in life. Single-leg tasks are often evaluated, but bilateral movements may also be compromised. Our aim was to use curve analyses to examine double-leg drop–jump kinematics in ACL-reconstructed, ACL-deficient, and healthy-knee cohorts. MethodsSubjects with unilateral ACL ruptures treated more than two decades ago (17–28years) conservatively with physiotherapy (ACLPT, n=26) or in combination with reconstructive surgery (ACLR, n=28) and healthy-knee controls (n=25) performed 40-cm drop–jumps. Three-dimensional knee, hip, and trunk kinematics were analyzed during Rebound, Flight, and Landing phases. Curves were time-normalized and compared between groups (injured and non-injured legs of ACLPT and ACLR vs. non-dominant and dominant legs of controls) and within groups (between legs) using functional analysis of variance methods. ResultsCompared to controls, ACL groups exhibited less knee and hip flexion on both legs during Rebound and greater knee external rotation on their injured leg at the start of Rebound and Landing. ACLR also showed less trunk flexion during Rebound. Between-leg differences were observed in ACLR only, with the injured leg more internally rotated at the hip. Overall, kinematic curves were similar between ACLR and ACLPT. However, compared to controls, deviations spanned a greater proportion of the drop–jump movement at the hip in ACLR and at the knee in ACLPT. ConclusionsTrunk and bilateral leg kinematics during double-leg drop–jumps are still compromised long after ACL-rupture care, independent of treatment. Curve analyses indicate the presence of distinct compensatory mechanisms in ACLPT and ACLR compared to controls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call