Abstract
With the emergence of large-scale point-sampled geometry acquired by high-resolution 3D scanning devices, it has become increasingly important to develop efficient algorithms for processing such models which have abundant geometric details and complex topology in general. As a preprocessing step, surface simplification is important and necessary for the subsequent operations and geometric processing. Owing to adaptive mean-shift clustering scheme, a curvature-aware adaptive re-sampling method is proposed for point-sampled geometry simplification. The generated sampling points are non-uniformly distributed and can account for the local geometric feature in a curvature aware manner, i.e. in the simplified model the sampling points are dense in the high curvature regions, and sparse in the low curvature regions. The proposed method has been implemented and demonstrated by several examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.