Abstract

Curvature tensors of higher-spin gauge theories have been known for some time. In the past, they were postulated using a generalization of the symmetry properties of the Riemann tensor (curl on each index of a totally symmetric rank-n field for each spin-n). For this reason they are sometimes referred to as the generalized “Riemann” tensors. In this article, a method for deriving these curvature tensors from first principles is presented; the derivation is completed without any a priori knowledge of the existence of the Riemann tensors or the curvature tensors of higher-spin gauge theories. To perform this derivation, a recently developed procedure for deriving exactly gauge invariant Lagrangian densities from quadratic combinations of N order of derivatives and M rank of tensor potential is applied to the N = M = n case under the spin-n gauge transformations. This procedure uniquely yields the Lagrangian for classical electrodynamics in the N = M = 1 case and the Lagrangian for higher derivative gravity (“Riemann” and “Ricci” squared terms) in the N = M = 2 case. It is proven here by direct calculation for the N = M = 3 case that the unique solution to this procedure is the spin-3 curvature tensor and its contractions. The spin-4 curvature tensor is also uniquely derived for the N = M = 4 case. In other words, it is proven here that, for the most general linear combination of scalars built from N derivatives and M rank of tensor potential, up to N = M = 4, there exists a unique solution to the resulting system of linear equations as the contracted spin-n curvature tensors. Conjectures regarding the solutions to the higher spin-n N = M = n are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call