Abstract

The development of high performance and stable heterogeneous catalysts is conducive to promoting the advanced oxidation process (AOPs) to promote the degradation of organic pollutants efficiently, low-cost and environmentally friendly. Here nitrogen-doped hollow carbon spheres (NHCSs) and rigid organic molecule were used to create space confinement and complexation confinement conditions, respectively, and an advanced single-atom catalyst capable of strongly activating peroxymonosulfate (PMS) to degrade organic pollutants was finally constructed. The AOPs system driven by CoNC/NHCSs (20 mg) combined with PMS (20 mg) can degrade nearly 100 % of 20 mg/L (100 mL) bisphenol A (BPA, a microplastic) pollutant within 30 min, and the mineralization rate is up to 70.5 %. Face the complex water environment, such as sewage containing coexisting anions and cations, or acidic or alkaline sewage, the CoNC/NHCSs/PMS system still has high catalytic stability, and universality for other organic pollutants. The filter column with CoNC/NHCSs as the core also realizes the continuous purification of organic pollutants, which shortens the distance between laboratory research and practical application. Radical quenching and electron paramagnetic resonance techniques confirmed that CoNC/NHCSs activated PMS to SO4·−, ·OH, and 1O2, and these reactive oxygen species combined to eliminate organic pollutants. Density functional theory (DFT) calculations jointly confirm that the strong activation of PMS by CoNC/NHCSs is the key to achieving efficient degradation of organic pollutants, and the activity of CoNC/NHCSs is derived from high exposure rate of active sites and curvature effect caused by structural bending.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.