Abstract

Membrane curvature and lipid composition plays a critical role in interchanging of matter and energy in cells. Peptide curvature sensors are known to activate signaling pathways and promote molecular transport across cell membranes. Recently, the 25-mer MARCKS-ED peptide, which is derived from the effector domain of the myristoylated alanine-rich C kinase substrate protein, has been reported to selectively recognize highly curved membrane surfaces. Our previous studies indicated that the naturally occurring L-MARCKS-ED peptide could simultaneously detect both phosphatidylserine and curvature. Here, we demonstrate that D-MARCKS-ED, composed by unnatural D-amino acids, has the same activities as its enantiomer, L-MARCKS-ED, as a curvature and lipid sensor. An atomistic molecular dynamics simulation suggests that D-MARCKS-ED may change from linear to a boat conformation upon binding to the membrane. Comparable enhancement of fluorescence intensity was observed between D- and L-MARCKS-ED peptides, indicating similar binding affinities. Meanwhile, circular dichroism spectra of D- and L-MARCKS-ED are almost symmetrical both in the presence and absence of liposomes. These results suggest similar behavior of artificial D- and natural L-MARCKS-ED peptides when binding to curved membranes. Our studies may contribute to further understanding of how MARCKS-ED senses membrane curvature as well as provide a new direction to develop novel membrane curvature probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.