Abstract
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes by using time-of-flight photon information after multiple diffuse reflections. The under-sampled scanning data can facilitate fast imaging. However, the resulting reconstruction problem becomes a serious ill-posed inverse problem, the solution of which is highly likely to be degraded due to noises and distortions. In this paper, we propose novel NLOS reconstruction models based on curvature regularization, i.e., the object-domain curvature regularization model and the dual (signal and object)-domain curvature regularization model. In what follows, we develop efficient optimization algorithms relying on the alternating direction method of multipliers (ADMM) with the backtracking stepsize rule, for which all solvers can be implemented on GPUs. We evaluate the proposed algorithms on both synthetic and real datasets, which achieve state-of-the-art performance, especially in the compressed sensing setting. Based on GPU computing, our algorithm is the most effective among iterative methods, balancing reconstruction quality and computational time. All our codes and data are available at https://github.com/Duanlab123/CurvNLOS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on pattern analysis and machine intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.