Abstract
A spacetime denotes a pure radiation field if its energy–momentum tensor represents a situation in which all the energy is transported in one direction with the speed of light. In 1989 Wils and later in 1997 Ludwig and Edgar studied the physical properties of pure radiation metrics, which are conformally related to a vacuum spacetime. In the present paper we investigate the curvature properties of the pure radiation metrics presented by Ludwig and Edgar. It is shown that such a pure radiation spacetime is semisymmetric, Ricci simple, R-space by Venzi and its Ricci tensor is Riemann compatible. It is also proved that its conformal curvature 2-forms and Ricci 1-forms are recurrent. We also present a pure radiation type metric and evaluate its curvature properties along with the form of its energy–momentum tensor. It is interesting to note that such a pure radiation type metric is Ein(3) and 3-quasi-Einstein. We also find out the sufficient conditions for which this metric represents a generalized pp-wave, pure radiation and perfect fluid. Finally we made a comparison between the curvature properties of Ludwig and Edgar’s pure radiation metric and pp-wave metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.