Abstract

A scale-invariant spectrum of isocurvature perturbations is generated during collapse in the ekpyrotic scaling solution in models where multiple fields have steep negative exponential potentials. The scale invariance of the spectrum is realized by a tachyonic instability in the isocurvature field. This instability drives the scaling solution to the late-time attractor that is the old ekpyrotic collapse dominated by a single field. We show that the transition from the scaling solution to the single-field-dominated ekpyrotic collapse automatically converts the initial isocurvature perturbations about the scaling solution to comoving curvature perturbations about the late-time attractor. The final amplitude of the comoving curvature perturbation is determined by the Hubble scale at the transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.