Abstract
The Quillen–Bismut–Freed construction associates a determinant line bundle with connection to an infinite dimensional super vector bundle with a family of Dirac-type operators. We define the regularized first Chern form of the infinite dimensional bundle, and relate it to the curvature of the Bismut–Freed connection on the determinant bundle. In finite dimensions, these forms agree (up to sign), but in infinite dimensions there is a correction term, which we express in terms of Wodzicki residues. We illustrate these results with a string theory computation. There is a natural super vector bundle over the manifold of smooth almost complex structures on a Riemannian surface. The Bismut–Freed superconnection is identified with classical Teichmüller theory connections, and its curvature and regularized first Chern form are computed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.