Abstract

AbstractWe refine the affine classification of real nets of quadrics in order to obtain generic curvature loci of regular 3‐manifolds in and singular corank one 3‐manifolds in . For this, we characterize the type of the curvature locus by the number and type of solutions of a system of equations given by four ternary cubics (which is a determinantal variety in some cases). We also study how singularities of the curvature locus of a regular 3‐manifold can go to infinity when the manifold is projected orthogonally in a tangent direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.