Abstract

How fish modulate their fin stiffness during locomotive manoeuvres remains unknown. We show that changing the fin's curvature modulates its stiffness. Modelling the fin as bendable bony rays held together by a membrane, we deduce that fin curvature is manifested as a misalignment of the principal bending axes between neighbouring rays. An external force causes neighbouring rays to bend and splay apart, and thus stretches the membrane. This coupling between bending the rays and stretching the membrane underlies the increase in stiffness. Using three-dimensional reconstruction of a mackerel (Scomber japonicus) pectoral fin for illustration, we calculate the range of stiffnesses this fin is expected to span by changing curvature. The three-dimensional reconstruction shows that, even in its geometrically flat state, a functional curvature is embedded within the fin microstructure owing to the morphology of individual rays. As the ability of a propulsive surface to transmit force to the surrounding fluid is limited by its stiffness, the fin curvature controls the coupling between the fish and its surrounding fluid. Thereby, our results provide mechanical underpinnings and morphological predictions for the hypothesis that the spanned range of fin stiffnesses correlates with the behaviour and the ecological niche of the fish.

Highlights

  • Ray-finned fish, or Actinopterygii, use their fins as a general purpose device to manipulate the surrounding fluid

  • We develop a simple mathematical model that encapsulates the essence of the bending–stretching coupling applied to the rayed-fin structure; bending of the rays is mechanically coupled to the stretching of the membranes

  • We have presented an essential model analysing the stiffening of a fish fin when curved transverse to the fin rays

Read more

Summary

Introduction

Ray-finned fish, or Actinopterygii, use their fins as a general purpose device to manipulate the surrounding fluid. That the rayed structure of the fin is found in greater than 99% of all living fish species is a testament to its versatility in the aquatic environment [1,2,3]. The fin stiffness under bending deformations is tacitly assumed to equal the individual ray bending rigidity multiplied by the number of rays [11]. We show using a mathematical model that fin curvature along a direction transverse to the rays stiffens it to bending beyond this simple picture. The mechanism of this stiffening underlies the common observation that, under its own weight, a flat sheet of paper droops but a slightly curved sheet stiffens and barely deforms. Unlike a sheet of paper, rayed fins are composite structures consisting

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.