Abstract

As a nonrelativistic particle constrained to remain on an (N − 1)-dimensional ((N ≥ 2)) hypersurface embedded in an N-dimensional Euclidean space, two different components pi and p j (i, j = 1, 2, 3,… N) of the Cartesian momentum of the particle are not mutually commutative, and explicitly commutation relations depend on products of positions and momenta in uncontrollable ways. The generalized Dupin indicatrix of the hypersurface, a local analysis technique, is utilized to explore the dependence of the noncommutativity on the curvatures around a local point of the hypersurface. The first finding is that the noncommutativity can be grouped into two categories; one is the product of a sectional curvature and the angular momentum, and another is the product of a principal curvature and the momentum. The second finding is that, for a small circle lying a tangential plane covering the local point, the noncommutativity leads to a rotation operator and the amount of the rotation is an angle anholonomy; and along each of the normal sectional curves centering the given point the noncommutativity leads to a translation plus an additional rotation and the amount of the rotation is one half of the tangential angle change of the arc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.