Abstract

We study the effect of an intrinsic curvature on the mechanical property of two-dimensional semiflexible biopolymers and find that it can induce a discontinuous transition in extension. At zero temperature, we accurately show that the extension of an intrinsically curved semiflexible biopolymer of finite length can undergo a multiple-step discontinuous transition regardless of bending rigidity. The transition is accompanied by unwinding loops, and the critical force reaches a limit quickly with decreasing number of loops so that, in the experiment, it is possible to observe the almost simultaneous opening of several loops. However, the fluctuation or configurational average at a finite temperature suppresses the sharp transition so that there is no discontinuous transition in a system of finite size. However, our results obtained from Monte Carlo simulation reveal that, at a finite temperature, the extension of a biopolymer can undergo a one-step first-order transition in the thermodynamical limit if the ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call