Abstract

We study curvature flows in the locally homogeneous case (e.g. compact quotients of Lie groups, solvmanifolds, nilmanifolds) in a unified way by considering a generic flow under just a few natural conditions on the broad class of almost-hermitian structures. As a main tool, we use an ODE system defined on the variety of 2 n 2n -dimensional Lie algebras, called the bracket flow, whose solutions differ from those to the original curvature flow by only pull-back by time-dependent diffeomorphisms. The approach, which has already been used to study the Ricci flow on homogeneous manifolds, is useful to better visualize the possible pointed limits of solutions, under diverse rescalings, as well as to address regularity issues. Immortal, ancient and self-similar solutions arise naturally from the qualitative analysis of the bracket flow. The Chern-Ricci flow and the symplectic curvature flow are considered in more detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.