Abstract

The free surface lattice Boltzmann method (FSLBM) is a combination of the hydrodynamic lattice Boltzmann method with a volume-of-fluid (VOF) interface capturing technique for the simulation of incompressible free surface flows. Capillary effects are modeled by extracting the curvature of the interface from the VOF indicator function and imposing a pressure jump at the free boundary. However, obtaining accurate curvature estimates from a VOF description can introduce significant errors. This article reports numerical results for three different surface tension models in standard test cases and compares the according errors in the velocity field (spurious currents). Furthermore, the FSLBM is shown to be suited to simulate wetting effects at solid boundaries. To this end, a new method is developed to represent wetting boundary conditions in a least-squares curvature reconstruction technique. The main limitations of the current FSLBM are analyzed and are found to be caused by its simplified advection scheme. Possible improvements are suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.