Abstract
As a novel representation method, two dimensional (2D) segmentation is gaining ground as an effective condition monitoring method due to its high-level information descriptional ability. However, the accuracy of extracting frequency information is still limited by the finite gray-level and the extraction ability of distinguishable texture for each fault. To overcome these drawbacks, this research proposes a bearing fault diagnosis method using the converted 2D vibrational signal matrices. In this method, 1D vibration signals are converted into 2D matrices to exploit the fault signatures from the converted images. Curvature filtering (mean curvature) algorithm is applied to eliminate the overwhelming interfering contents and preserves the necessary edge information contained in the 2D matrix. In addition, the histogram of oriented gradients features is employed for the effective fault feature extraction. Finally, a one-versus-one support vector machine is utilized for the automatically fault classification. An experimental investigation was carried out for the performance evaluation of the proposed method. Comparison results indicate that the established method is capable of bearing fault detection with considerable accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.