Abstract
Tunable photoluminescence (PL) has wide applications in optical waveguides and communication. Since the PL intensity is strongly dependent on the crystal field symmetry, curvature-dependent strain-induced PL modulation is expected in flexible antiferroelectric (AFE) thin film materials. Here, flexible Er-doped Pb0.98La0.02Zr0.95Ti0.05O3 (PLZT) AFE thin films were prepared via the sol-gel method. A giant and reversible PL intensity modulation (482%) was achieved during the bending process. Based on density functional theory (DFT) calculations and Raman spectra measurements, the relationship amongst the curvature-dependent strains, crystal structure, and PL modulation was discussed. The induced strain leads to lattice distortion and even a phase transition, both of which contribute to the reduction in crystal symmetry and thus significantly enhance the PL intensity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.