Abstract

The state of deformation in deep drawing operations is characterized by superimposed stretching and bending (i.e. stretch-bending). Bending effects, especially for Advanced High Strength Steels (AHSS) are known to influence the material formability. Traditional formability measures such as the Forming Limit Curve (FLC) fail to reliably predict stretch-bending formability. Consequently, to ensure an efficient and economical use of AHSS in the industrial application, current research work is focusing on the reliable numerical prediction of stretch-bending formability of AHSS sheets.Within this work, a phenomenological concept to predict the forming limit (e.g. the onset of necking) in deep drawing processes taking bending effects into account is presented. The proposed concept is based on curvature-dependent (i.e. regarding the principle curvatures κ1 and κ2 of the stretch-bend (convex) sheet surface) forming limit surfaces representing the probability of failure and is calibrated with experimental results from stretch-bending tests and conventional forming test such as a Nakazima test. The results of the phenomenological forming limit criterion are promising and show a more accurate prediction of the drawing depth at failure than the conventional FLC approach. The method contributes also to a probabilistic view on the forming limit of deep drawing parts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call