Abstract

To accurately describe the persistent current for various toroidal carbon nanotubes (TCNs), a semiempirical sp3 tight-binding model is presented, in which the intrinsic curvature and hybridization have been fully taken into account. The calculations show that the curvature and hybridization can induce dramatic changes in the energy spectra of TCNs such as the Fermi energy EF shifting up, an energy gap opening at EF, and the energy spectrum symmetry about EF destroyed, which leads to a decrease of persistent current and changes in the shape of the flux-dependent current. In the presence of curvature and hybridization, the persistent current in non-armchair TCNs is nearly an order of magnitude lower than that obtained by using the Brillouin-zone folding approach, while it is of the same order of magnitude in armchair TCNs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call