Abstract
In emergency scenarios, such as disaster or military situations, ad hoc networks should be deployed as no central coordination is available. In this letter, we propose a distributed solution for building mobile ad hoc networks, where the mobile nodes determine their positions as a team autonomously based on reinforcement learning. We propose a special design of a decentralized partially observable Markov decision process to build a cohesive team of mobile nodes in a distributed manner. Each mobile node in the team learns an individual policy that determines movement under partial observation, with the common goal of maximizing network throughput. In the learning process, each node indirectly negotiates the role in the team while explicitly considering the locations of other neighboring nodes and network throughput. To improve learning efficiency, we design a curriculum that encourages nodes to disperse initially but reside in specific regions eventually. Such a curriculum enables each node to be placed in its best location, thereby expediting the collective convergence of all nodes as a cohesive team. Simulation results confirm that the proposed solution can successfully build a cohesive team that maintains high network throughput with low power consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.