Abstract

In this study the current–voltage (I–V) and capacitance–voltage (C–V) characteristics of metal semiconductor Ni/p-Si(100) based Schottky diode on p- type silicon measured over a wide temperature range (60–300 K) have been studied on the basis of thermionic emission diffusion mechanism and the assumption of a Gaussian distribution of barrier heights. The parameters ideality factor, barrier height and series resistance are determined by performing plots from the forward bias current–voltage (I–V) and reverse bias capacitance–voltage (C–V) characteristics. Thus, the barrier height for Ni/p-Si(100) Schottky diode obtained between 0.2053 and 0.513 eV, and the ideality factor (η) between 8.8792 and 2.4351 for 60–300 K range. A simple method, involving the use of ϕb versus 1/T data, is suggested to gather evidence for the occurrence of a Gaussian distribution of barrier heights and obtain value of standard deviation 0.06402 (60–300 K).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.