Abstract

This paper reviews four significant advances on the feedforward architecture that has dominated discussions of connectionism. The first involves introducing modularity into networks by employing procedures whereby different networks learn to perform different components of a task, and a Gating Network determines which network is best equiped to respond to a given input. The second consists in the use of recurrent inputs whereby information from a previous cycle of processing is made available on later cycles. The third development involves developing compressed representations of strings in which there is no longer an explicit encoding of the components but where information about the structure of the original string can be recovered and so is present functionally. The final advance entails using connectionist learning procedures not just to change weights in networks but to change the patterns used as inputs to the network. These advances significantly increase the usefulness of connectionist networks for modeling human cognitive performance by, among other things, providing tools for explaining the productivity and systematicity of some mental activities, and developing representations that are sensitive to the content they are to represent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.