Abstract

AbstractThe main properties of the San Lorenzo (SL) overflow are studied, using data from two nonsimultaneous ADCP moorings (located at the sill, and 5 km downstream), as well as CTD and LADCP profiles. Strong tidal currents at the sill modulate the overflow, which is not shut down during the neaps. At the downstream site, the largest flood currents are associated with colder water advected from the sill, flowing downslope, and creating an asymmetry in the semidiurnal tidal cycle. The overflow introduces a significant fortnightly harmonic at the downstream site, and delays the M2 tidal currents for more than an hour with respect to the currents at the sill. The overflow mixes with the overlying water by entrainment during its supercritical stage, reaching near‐bottom velocities as high as 1.5 ms−1 and an estimated mean transport of 0.11 Sv; almost twice that estimated at the sill for the same period of the year. Estimated Froude numbers during spring tides suggest the development of an internal hydraulic jump. After relaxation of the maximum downstream currents, high‐frequency temperature fluctuations, likely linked to upstream traveling waves, are consistently observed. Direct estimations of the turbulent dissipation rates were used to compute diapycnal diffusivity (Kρ) profiles. Mean estimates of Kρ, as high as 5.5 × 10−2 m2s−1, show that shear at the interface is the most significant source of cross‐isopycnal mixing along the SL overflow during ebb tides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call