Abstract
This paper proposes a current-mode hysteretic buck converter with a spur-free constant-cycle frequency-hopping controller that fully eliminates spurs from the switching noise spectrum irrespective of variations in the switching frequency and operating conditions. As a result, the need for frequency regulation loops to ensure nonvarying switching frequency (i.e., fixed spurs location) in hysteretic controllers is eliminated. Moreover, compared to frequency regulation loops, the proposed converter offers the advantage of eliminating mixing and interference altogether due to its spur-free operation, and thus, it can be used to power, or to be integrated within noise-sensitive systems while benefiting from the superior dynamic performance of its hysteretic operation. The proposed converter uses dual-sided hysteretic band modulation to eliminate the inductor current imbalance that results from frequency hopping along with the output voltage transients and low-frequency noise floor peaking associated with it. Moreover, a feedforward adaptive hysteretic band controller is proposed to reduce variations in the switching frequency with the input voltage, and an all-digital soft-startup circuit is proposed to control the in-rush current without requiring any off-chip components. The converter is implemented in a 0.35- μ m standard CMOS technology and it achieves 92% peak efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.