Abstract

This paper reviews recent advancement on the research toward graphene-based terahertz (THz) lasers. Optical and/or injection pumping of graphene can enable negative-dynamic conductivity in the THz spectral range, which may lead to new types of THz lasers. A forward-biased graphene structure with a lateral p-i-n junction was implemented in a distributed-feedback (DFB) dual-gate graphene-channel FET and observed a single mode emission at 5.2 THz at 100K. The observed spectral linewidth fairly agrees with the modal gain analysis based on DFB-Fabry-Perrot hybrid-cavitymode modeling. Although the results obtained are still preliminary level, the observed emission could be interpreted as THz lasing in population-inverted graphene by carrier-injection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call