Abstract

Current-induced breakdown phenomena of carbon nanofibers (CNFs) for future on-chip interconnect applications are presented. The effect of heat dissipation via the underlying substrate is studied using different experimental configurations. Scanning electron microscopy (SEM) techniques are utilized to study the structural damage by current stress. While the measured maximum current density in the suspended CNF in air is inversely proportional to nanofiber length and independent of diameter, SiO2-supported CNFs improves their current capacity, which implies effective heat dissipation to the oxide. The correlation between maximum current density and electrical resistivity confirms the importance of local Joule heating, showing strong coupling between electrical and thermal transport in CNFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.