Abstract

By micromagnetic simulation, we investigated the effect of the Dzyaloshinskii–Moriya interaction (DMI) on the static and dynamic characteristics of a 360° domain wall. Simulation results show that both the energy and the size of a 360° domain wall decrease with the increase of DMI intensity. In the presence of DMI, the stable motion of a 360° domain wall can be either along the +x direction or −x direction depending on the sign of the DMI. For stable motion, the maximum velocity of a 360° domain wall is 19.87% larger than that without the DMI. Increasing the current density beyond the Walker threshold, conversion between the 360° domain wall state and the vortex state was observed. Further increasing the current density, the proliferation of 360° domain walls becomes possible. Moreover, the 360° domain wall becomes more flexible and easier to pass a notch by considering the DMI. These findings may offer guidance for the development of 360° domain wall-based racetrack memories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call