Abstract
Electronic structure of atoms in a strong time-dependent magnetic field is investigated for the helium atom for field strengths ranging between B = 0–10 11 G. Nonrelativistic time-dependent density functional computations are performed through a quantum fluid dynamics based generalized nonlinear Schrödinger equation. The real-time dynamics of helium atom, in the intermediate regime, reveal a distinct transition in the behavior of correlation and exchange energies. At high-field strengths, exchange energy becomes increasingly important with increasing field strength than the correlation energy. The present work, without employing any current-dependent functional, successfully compares characteristic features of strong static magnetic fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.