Abstract

Spin-transfer-driven oscillations of a transverse domain wall confined to a perpendicular spin-valve structure are investigated using a one-dimensional model. The stack consists of a polarizer, nonmagnetic spacer, soft free layer, and pinned magnetic layer. It is found that the domain-wall oscillation frequency is a nonmonotonic, highly asymmetrical function of applied electric current, showing a strong dependence on the current direction and the relative strengths of the interfacial and bulk spin-transfer torques. Micromagnetic analysis reveals that the surprising and atypical oscillator response is due to an interplay between the interfacial spin-transfer torque, the bulk spin-transfer torque, the exchange torque, and the damping torque. The underlying physical and material responses are examined, including the important role of the domain-wall twist. The competitions between the involved torques under different operating conditions suggest that the oscillator could serve as a model system to investigate magnetic and spintronic phenomena at the nanoscale. The observed current-dependent twisting of the free-layer magnetization about the axis of precession may further be found interesting for investigations of the interaction between spin-polarized current and chiral spin structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.