Abstract

In this progress report an overview is given on the use of the organic electrochemical transistor (OECT) as a biosensor for impedance sensing of cell layers. The transient OECT current can be used to detect changes in the impedance of the cell layer, as shown by Jimison etal. To circumvent the application of a high gate bias and preventing electrolysis of the electrolyte, in case of small impedance variations, an alternative measuring technique based on an OECT in a current-driven configuration is developed. The ion-sensitivity is larger than 1200 mV V-1 dec-1 at low operating voltage. It can be even further enhanced using an OECT based complementary amplifier, which consists of a p-type and an n-type OECT connected in series, as known from digital electronics. The monitoring of cell layer integrity and irreversible disruption of barrier function with the current-driven OECT is demonstrated for an epithelial Caco-2 cell layer, showing the enhanced ion-sensitivity as compared to the standard OECT configuration. As a state-of-the-art application of the current-driven OECT, the in situ monitoring of reversible tight junction modulation under the effect of drug additives, like poly-l-lysine, is discussed. This shows its potential for in vitro and even in vivo toxicological and drug delivery studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.