Abstract

Metabolic scaling theory allows us to link plant hydraulic structure with metabolic rates in a quantitative framework. In this theoretical framework, we considered the hydraulic structure of current-year shoots in Pinus sylvestris and Picea abies, focusing on two properties unaccounted for by metabolic scaling theories: conifer needles are attached to the entire length of shoots, and the shoot as a terminal element does not display invariant properties. We measured shoot length and diameter as well as conduit diameter and density in two locations of 14 current-year non-leader shoots of pine and spruce saplings, and calculated conductivities of shoots from measured conduit properties. We evaluated scaling exponents for the hydraulic structure of shoots at the end of the water transport pathway from the data and applied the results to simulate water potential of shoots in the crown. Shoot shape was intermediate between cylindrical and paraboloid. Contrary to previous findings, we found that conduit diameter scaled with relative, not absolute, distance from the apex and absolute under-bark shoot diameter independently of species within the first-year shoots. Shoot hydraulic conductivity scaled with shoot diameter and hydraulic diameter. Larger shoots had higher hydraulic conductance. We further demonstrate by novel model calculations that ignoring foliage distribution along the hydraulic pathway overestimates water potential loss in shoots and branches and therefore overestimates related water stress effects. Scaling of hydraulic properties with shoot size enhances apical dominance and may contribute to the decline of whole-tree conductance in large trees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call