Abstract

The influence of the structure of foamed polycrystalline bismuth-based superconductors on their critical currents and current-voltage characteristics is studied. It is found that superconducting foams have a fractal structure, and the fractal dimension of the boundary between the normal and superconducting phases is estimated. The magnetic and transport properties of superconducting foams are investigated, and the current-voltage characteristics are obtained in a wide range of currents. The effect of percolation phenomena on vortex pinning in a foamed superconductor is considered. The current-voltage characteristics of the superconducting foams at the beginning of the resistive transition are found to be in good agreement with a model in which a magnetic flux is assumed to be trapped in the fractal clusters of a normal phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call