Abstract

Our Earth is a “blue planet” that 70 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\%$</tex-math></inline-formula> of the surface is covered by the oceans, but most area of oceans remain largely unexplored. Besides supporting the Earth's ecosystem and moderating climate change, oceans are rich in economically relevant natural resources ready for harvesting, such as fishery, oil and gas, and mineral resources. Ocean observation and monitoring are therefore essential for environmental preservation and sea exploration. With the availability of advanced communication techniques, researchers began to look into distributed data acquisition and ocean interconnectivity, which engendered the concepts of intelligent ocean and the Internet-of-Underwater-Things (IoUT) framework. The framework is gaining traction since one could incorporate fiber sensing, acoustic, radio frequency, and optical wireless communication technologies to establish stable, broad-coverage, and massive ocean networks. The development of underwater internet beyond acoustic communication is still in its relative infancy, and therefore more aggregated research efforts from the related communities will be required to eventually achieve breakthroughs in comprehensive IoUT technologies. This review sheds light on the practical considerations and solutions to the challenges and robustness of the optical IoUT network in terms of channel characterization, turbulence studies, mobility, receiver optimization, and the application layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call