Abstract

Lattice-matched Pt/Au-In0.17Al0.83N/GaN hetreojunction Schottky diodes with circular planar structure have been fabricated and investigated by temperature dependent electrical measurements. The forward and reverse current transport mechanisms are analyzed by fitting the experimental current-voltage characteristics of the devices with various models. The results show that (1) the forward-low-bias current is mainly due to the multiple trap-assisted tunneling, while the forward-high-bias current is governed by the thermionic emission mechanism with a significant series resistance effect; (2) the reverse leakage current under low electric fields (<6 MV/cm) is mainly carried by the Frenkel-Poole emission electrons, while at higher fields the Fowler-Nordheim tunneling mechanism dominates due to the formation of a triangular barrier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.