Abstract

In a Schottky diode, the diode saturation current is controlled by the barrier height at the metal and semi-conductor contact, assuming that the dominant current is due to thermionic emission. When ion implantation is used to increase the barrier height, both thermionic emission and drift-diffusion of carriers become important in calculating the current. Numerical methods are used in solving Poisson's equation and the current continuity equations for an ion implanted doping profile. The electron and hole current in the surface region are calculated as a function of the total implantation dosage. The results show that the decrease of saturation current and the increase of effective barrier height in an ion implanted diode is mainly due to the suppression of the thermionic emission current by the implanted impurity atoms, rendering the diode to act like a pn junction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call