Abstract

A close relationship between glacial and periglacial landforms is frequently observed in alpine environments, where a transition from glacial to periglacial processes often took place after the end of the Little Ice Age (LIA). Understanding the origin of these landforms is challenging, and assessing the current spatial domain of glacial and periglacial processes may be a difficult task in high-relief areas, where thick and widespread debris cover often characterize rapidly decaying glaciers. Here we present a comprehensive study of a composite landform located in the Dolomites (South-Eastern Alps), combining geomorphological, geophysical and topographic surveys with ground surface temperature measurements. Results indicate that a debris-covered glacier persists in the upper part, rather large compared to the LIA extent, but currently inactive and rapidly losing mass. An active rock glacier exists in the lower part, surrounded by discontinuous permafrost. A frozen body about 10m thick was detected in the rock glacier and geomorphological evidence suggests that this ice mass is completely detached from the debris-covered glacier. Our findings suggest that the lower part of the composite landform is probably a remnant of the ancient glacier tongue and is currently evolving under periglacial conditions. Periglacial processes are therefore replacing glacial processes which dominated in this site during the LIA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.